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SUMMARY

A new multiblock pressure-based ®nite element algorithm has been developed. This methodology implements a
novel quadratic interpolation for the elemental pressure while using a bilinear interpolation for the velocity.
Details of the algorithm and its multiblock foundation are provided along with a complete description of the
implementation of the RNG-based k±e model. The results presented clearly demonstrate the validity and
accuracy of this new approach for complex ¯ow problems such as diffusers. # 1997 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Primitive variable ®nite element algorithms have been traditionally developed under the assumption

that the pressure interpolating function must be at a lower order than the velocity variables. This may

be true for non-staggered methods that must satisfy the Brabuska±Brezzi1 compatibility conditions,

but not for the newer algorithms that parallel the SIMPLE-type2 approach. The works of Rice and

Schnipke,3 Shaw4 and Comini and Del Giudice5 develop different algorithms that use equal-order

interpolation for the ¯ow variables. None of the solutions presented indicated any signs of the

decoupling `checkerboard' problem that normally occurs with pressure. The algorithm in the current

work uses a novel approach of interpolating the pressure quadratically and the velocity ®eld

bilinearly. The higher-order interpolation has been found to increase both the stability and

convergence rate of the Laplacian-type pressure equation used in the algorithm. The choice of using

the higher-order interpolation for pressure was also in¯uenced by the authors' unpublished work that

used a linear approximation for the elemental pressure ®eld. In this work the pressure distribution was

found to oscillate and had to be heavily underrelaxed. This effort as well as the current study uses the

algorithm based on the SIMPLER approach reported by Rice and Schnipke.3 The current study also
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uses the multiblock scheme reported by Hill and Baskharone6 with changes made for turbulent

problems.

Turbulence is modelled using an RNG-based high-Reynolds-number (Re) model developed by

Yakhot et al.7,8 The approach used to implement the RNG model was derived from the reported ®nite

element formulations of the standard high-Re k±e model. The primary differences between these two

models are the constants and the source term in the dissipation rate equation. There are some

variations in the techniques used to split or linearize source terms, but the main differences in the

algorithms reviewed were with the manner in which the wall functions were imposed. This region is

of prime concern for problems involving wall-generated turbulence.

The work of Thomas et al.9 was one of the pioneering efforts which imposed the velocity using the

wall functions. Their approach displaced the near-wall elements by a small distance away from the

boundary. This small region was essentially removed from the computational domain and allowed the

wall functions to be applied to the boundary nodes that previously fell on the solid boundaries. This

recursive approach uses the most recent discrete values of velocity to calculate a normal derivative

for velocity. This value is used to approximate the wall shear stress. Using the new wall stress and the

wall functions gives rise to the new tangential velocity. The normal velocity, however, was set to

zero. The functions that relate k and e to the wall stress were derived from the near-wall assumption

that turbulence production equals dissipation.

An improvement to this wall function approach was reported by Benim and Zinser.10 This work,

which was based-on quadrilateral elements, was derived using a two-point stencil. At what would be

the farthest point from the wall, the shear stress was calculated. This value was obtained using the

most recent tangential velocity at that node in conjunction with the relation for the turbulence

parameter y� suggested by Launder and Spalding.11 This relation requires the turbulent kinetic

energy, which in turn is taken from the near-wall node in the stencil. Assuming that both nodes fall on

the same logarithmic curve, the new shear stress was directly used in the wall functions to calculate a

new value of the tangential velocity for the near-wall node in the stencil. Instead of specifying a zero

normal velocity, a novel mass balance technique was used by these authors to resolve this value. This

approach was extended to general non-orthogonal domains by computing, not specifying, the point

location farthest away from the wall in the two-point stencil.12 This method projects a normal line

from the wall through the ®rst point and terminates it when it intersects the wall of the element

located on the second layer of elements from the wall.

A method for imposing the wall shear stress was reported by Schnipke.13 This work parallels the

approach commonly employed in ®nite volume codes such as TEACH-2E14 and KIVA-II.15 At near-

wall nodes the relation proposed by Launder and Spalding11 is also used to obtain the required y�-

value. By manipulating the wall function relations, the y�-value is used to calculate a new value of

turbulent viscosity. Using this value and the known form of the normal derivative for velocity, the

new shear stress was formed. Imposing the same turbulent viscosity at both the wall and the near-wall

node resulted in a constant shear stress approximation for the momentum equations. The shear stress

was also modi®ed in the generation term of the turbulent kinetic energy equation for elements

adjacent to solid walls. The expression by Pun and Spalding16 was used for the boundary condition of

e at all near-wall nodes.

The method adopted in the current algorithm has integrated the concepts from both methods to

arrive at a unique ®nite element implementation of the standard wall functions. This approach, along

with the ®nite element equations, is developed in the next section. The results of the validation effort

for the algorithm with the RNG-based high-Re model are then reported. The study performed is

considered a `worst'-case scenario for the model and the results are compared both with experimental

data and with numerical solutions using the standard high-Re k±e model. Conclusions drawn from this

study are given in the ®nal section.
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2. ANALYSIS

The ®nite element equations developed in this section are formulated under the assumption that the

¯uid ¯ow is Newtonian, steady, axisymmetric and incompressible. The Reynolds-averaged ¯ow

governing equations for this class of ¯ow problem are as follows,
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where v, u, p and r are the Reynolds-averaged values of the velocity components, pressure and

density respectively and me is the effective viscosity de®ned as me � m� mt. Use of the two-equation

model dictates that mt be de®ned in terms of both the kinetic energy and the dissipation rate as

follows,

mt � rCm
k2

e
; �2�

where k is the Reynolds-averaged turbulent kinetic energy, e is the Reynolds-averaged dissipation

rate and Cm is a constant. The transport equations used to calculate the turbulence quantities for

equation (2) are provided from the RNG-based high-Re k±e model and are given in their

axisymmetric form as follows:
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In equations (3a±c), C1, C2, Cm, sk and se are constants that differ from those used in the standard

high-Re k±e model. A comparison between these two sets of constants is given in Table I.

Equations (1a±c), (2) and (3a±e) comprise the set of ¯ow governing equations. Development of the

®nite element form of these equations is performed using their non-dimensional form. The following

expressions are used in the non-dimensionalization process:

u* � u=U ; v* � v=U ; p* � �pÿ P�=rU 2;

x* � x=L; r* � r=L; m* � m1=m;

k* � k=U 2; e* � eL=U3;

�4�

where U, L, P and m are the reference values for velocity, length, pressure and viscosity respectively.

The ®nal non-dimensional form of the ¯ow governing equations is given as follows:
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where the following relations are now de®ned:
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Table I. Comparison of constants for different k±e models

Cm sk se C1 C2 k

Standard k±e model 0�09 1�0 1�0 1�44 1�92 0�4
RNG-based, k±e model 0�09 1�39 1�39 1�42 1�68 0�4
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The ®nite element formulation follows the same logic that was reported by Hill and Baskharone,6

except that two additional equations are now solved after the velocity has been corrected and the ¯ow

®eld is axisymmetric. The minor changes in the ®nite element equations prior to this point in the

computational loop are found in the intermediate velocity equations where the effective viscosity

now varies. These changes have been incorporated and the superscript asterisks dropped for

simpli®cation to produce the resulting equations as follows:
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where dAe is the differential axisymmetric area (r dr dz), Mi is the bilinear shape function and Nj is

the quadratic shape function. ~Wi is a weighting function with a perturbation function component

added � ~Wi � Wi � ~Pi�. The perturbation function is a result of the upwind scheme and its value is

obtained on an element basis using the local velocity ®eld. This upwinding technique was ®rst

reported by Brooks and Hughes17 and has been proven to be less diffusive than the streamline upwind

method developed by Rice and Schnipke.18 The weighting function Wi for these equations is bilinear.

All variables with overbars are interpolated at integration points using the most recent values of the

indicated variables.

The pressure and velocity correction equations remain nearly unchanged except for the minor

axisymmetric modi®cations and are given as follows for completeness:
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For equations (7) and (8) the `hatted' velocities are the sum of the off-diagonal coef®cients of the

momentum equations multiplied by the nodal intermediate velocity values. After these nodal

quantities are computed, the velocity update is performed using the new pressure ®eld. Next, the

solution of the turbulent kinetic energy and dissipation rate is carried out. The ®nite element form of

these equations, which was used in this work, was developed using equation (5h) to obtain forms of

the source terms that can be linearized in terms of the ®eld variable being solved. This splitting

technique can be written as follows:

Sn � Snÿ1 � @S
@f
�fnÿ1��fn ÿ fnÿ1�: �9�
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The dissipation source term in equation (5d) for the turbulent kinetic energy is manipulated using this

procedure. The intermediate results for this term are given ®rst, followed by the elemental turbulent

kinetic energy equation:

e � Cm Re k2
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Two of the source terms in the e-equation are now developed. The ®rst source, on the right side of

equation (5e), is modi®ed by inserting equation (5h). This step results in the following expression for

this source term:

C1me
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Next, the linearizing technique expressed by equation (9) is applied to the second source term on the

right side of equation (5e), giving rise to the following results:
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These two new expressions are used in equation (5e) to produce the ®nal form of the e-equation as

follows,
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The system of equations given by (6a,b), (7), (8), (10) and (11) represents the ®nite element

equations for a single block and is supplemented by equations (5g,h) and Table I. Implementation of

these equations into the multiblock format, for inner-block boundary nodes, follows the same

approach as developed by Hill and Baskharone.6 The discretized form is used to emphasize the

contributions obtained from a foreign block. The ®nal form of this set of equations is given as

follows:
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where
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The superscript primes denote contributions from a foreign block and rv
i represents the source term in

the radial momentum equation. Note that the limits in the summation expressions for the pressure and

velocity are now different. The pressure equation and the velocity correction are given as follows:
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For consistency the expressions for û and v̂ are updated and presented as follows:
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The form of the multiblock expressions for k and e can now be derived from equation (12a) as

follows:
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The selected approach for implementing wall functions utilizes the constant wall shear stress

characteristic of these functions. The law of the wall and log law of the wall are described in

Reference 19 and are given as follows:
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where ut, yn and tw are the tangential velocity, the normal distance to the solid boundary and the wall

shear stress respectively. B and k are constants and have the approximate values 5�5 and 0�41

respectively. Accordingly, the de®nition of y� is given as follows:

y� � yn

n

�r
tw

r

�
: �14�

For the condition y�4 12 the law of the wall is used to represent the wall shear stress as follows:

tw � m
ut

yn

: �15�

For the condition y� > 12, equation (13b) can be minipulated using equation (14) to derive an

equivalent form for the shear stress as follows:

tw � m
ky�

ln�Ey��
ut

un

�16�

where E is de®ned as the inverse log of Bk. The value of viscosity for the near-wall region can be

derived form equations (15) and (16). For y�4 12 the near-wall value of viscosity will be the laminar

value. For y�> 12, equation (16) implies that the required turbulent viscosity will have the form:

mw � m
ky�

ln�Ey�� :

The computational sequence in the current approach proceeds by calculating a new value of y� using

the most recent value of a near-wall node tangential velocity and the appropriate wall function

relations in a recursive manner. With y� evaluated, the appropriate value of the near-wall viscosity

can be calculated. This value is then imposed at both the near-wall node and its nearest wall node to

achieve a constant shear stress effect in the momentum equations. The boundary conditions (BCs) for

k and e are derived in terms of the wall shear stress using the near-wall assumption that production

equals dissipation. These relations are given as follows:

k-BC

kn �
�tw=r�2

C0�5
m

; �17�

e-BC

en �
�tW=r�3
kyn
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The values obtained from these two expressions are applied at the near-wall node as boundary

conditions. The wall nodes for the k-equation are speci®ed to be zero and the wall nodes for the e-
equation are speci®ed to be the most recent value of the nearest near-wall node value obtained from

equation (18). As a result, there are effectively two consecutive rows or columns at all solid

boundaries which provide the decoupling mechanism from the walls.

There are several unique capabilities in the current algorithm that were developed in order to

implement the multiblock approach using a mixed-order formulation. The original design of the code

always secured the minimal bandwidth for each ¯ow model. This favourable characteristic was

ensured by always numbering ®rst in the direction with the fewest elements. The resulting logic used

in the ®nite element model generator in this investigation was based on numbering both the corner

and mid-side nodes in a sequential manner. The use of a frontal solver, such as the one proposed by

622 D. L. HILL AND E. A. BASKHARONE

INT. J. NUMER. METH. FLUIDS, VOL. 25: 615±631 (1997) # 1997 by John Wiley & Sons, Ltd.



Hood,20 requires that the corner nodes be numbered ®rst, followed by the mid-side nodes. Such an

approach will always require more in-core memory than necessary to solve the problem. In this work

the desired minimum bandwidth attribute was maintained by implementing a new ef®cient method to

solve and manipulate variables de®ned at only corner nodes with variables de®ned at all nodes. As an

example, it is easy to visualize the indexing problem that occurs when a ¯ow solver algorithm tries to

solve for a velocity ®eld with nodes numbered 1, 3, 5, etc. Flow solvers typically work more

ef®ciently with a system of equations that are sequentially numbered from 1 to the total number of

nodes.

Another unique aspect of the algorithm centres around the multiblock logic, as pertaining to the

control logic of the bilinear variables. A new logic that implicitly derives the bilinear variable control

indexing from the quadratic control parameters was developed. This feature greatly reduced the

indexing problem by having a single set of parameters. The new logic was also designed to maintain

the capability of the code to permit the exchange of information between blocks with faces which do

not have the same number of elements. This method streamlines the memory usage, because only two

grid blocks are in memory during any part of the solution update. This part of the algorithm reverts

back to north, south, east and west ®nite volume orientation and assumes that all block are numbered

in the direction which imposes a minimal bandwidth.

One unfavourable characteristic of the upwind scheme used in this is that it does not produce a

positive de®nite matrix of in¯uence coef®cients. This prohibited the use of iterative solvers based on

such strategies as that of the successive overrelaxation21 or the conjugate gradient method with

preconditioning.22 The solver implemented was based on Gaussian elimination.21 This solver was

developed speci®cally to invert a global matrix stored in the format used by the current algorithm, as

illustrated in Figure 1. This format stores only the bandwidth in memory, thus avoiding unnecessary

multiplication by zeros.

3. RESULTS

The validation of the new multiblock algorithm using the RNG-based high-Re K±e model is

performed using data from a diffuser ¯ow. This particular ¯ow study was selected to show that the

model is implemented correctly and to determine its performance relative to experimental data and

the standard high-Re k±e model.

Figure 1. Storage method for global coef®cient matrix (banded sparse matric approach)
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The ¯ow problem is that of a conical diffuser that was experimentally investigated by Stieglmeier

et al.23 The foremost ¯ow structure in this problem is a separation zone that occurs along the diffuser

wall. Accurate prediction of the reattachment length, which characterizes the recirculation zone, is

used as a meaningful measure of how well the turbulence model performs with problems that contain

strong adverse pressure gradients. The inlet Reynolds number for this study, based on the hydraulic

diameter, is 15,600. This value is low for the application range of the RNG-based high-Re k±e model.

The problem, from this standpoint, is therefore viewed as a `worst'-case problem.

The conical diffuser geometry is shown in Figure 2, along with the boundary conditions that were

enforced. The inlet axial velocity pro®le was obtained through digitizing the reported data and the

radial velocity was set to zero. The inlet pro®les of k and e were assumed constant and their values

determined using the Reynolds stress data. As for the exit region, the zero-streamwise gradient

approximation was imposed for all ®eld variables with the exception of pressure, which was set to

zero as datum value. This boundary condition, together with the zero-streamwise-gradient constraint,

results in the well-known zero-surface-traction boundary condition. Finally, the wall functions were

implemented over all solid walls in the manner described earlier.

A grid dependence study was initially performed to establish the necessary resolution of the ®nite

element model. The selected criterion that had to be satis®ed was that the recirculation zone length

and pressure ®eld remain essentially unchanged with further model re®nement. For the purpose of

consistency the distance between wall and near-wall nodes was kept constant for all ®nite element

models. This value was obtained by enforcing the ®rst node away from the wall at the inlet plane to

have a y�-value of 100. Furthermore, the length/width ratio of the elements was kept below 10. Using

these criteria and guidelines, the point of grid independence was determined to occur between the

case where the ®nite element model had 4544 and 5893 points. A single block was used for each case

and the ®nite element model for these two models is shown in Figures 3 and 4. The results obtained

with these models are compared using the streakline traces shown in Figure 5. This ®gure shows that

the recirculation zones have practically the same reattachment length, which is approximately 9�5%

Figure 2. Conical diffuser geometry
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longer than the measured value. The pressure contours shown in Figure 6 show the same recovery

characteristics. In addition, the turbulent viscosity distribution shown in Figure 7 is provided from the

5893-point case. This contour is actually the ratio of turbulent to laminar viscosity. As seen in the

®gure, this ratio is predicted not to exceed the value of 200.

The comparison of the current RNG-based high-Re k±e model with the standard high-Re k±e model

was made using the conical diffuser ®nite element model shown in Figure 3. The streakline traces for

Figure 3. Finite element model using 4533 points

Figure 4. ®nite element model using 5893 points
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Figure 5. Comparison of streaklines to show grid independence

Figure 6. Comparison of pressure ®eld characteristics
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Figure 7. Turbulent viscosity ratio distribution

Figure 8. Streakline comparison between RNG model and standard k-e model

MULTIBLOCK PRESSURE-BASED ALGORITHM FOR TURBULENT FLOWS 627

# 1997 by John Wiley & Sons, Ltd. INT. J. NUMER. METH. FLUIDS, VOL. 25: 615±631 (1997)



these cases are compared in Figure 8. The shorter reattachment length predicted with the standard k±e
model shows this model's diffusive nature. This reattachment length was, comparatively,

underpredicted by over 30%. The different characteristics between this model and the current

RNG-based model can be further studied by comparing the turbulence kinetic energy distributions

shown in Figure 9. Examination of this ®gure reveals that the turbulent kinetic energy distribution

predicted by the high-Re k±e model is more diffuse.

Development of the axial velocity pro®le is compared with the experimentally reported data in

Figure 10. The predicted values in this ®gure re¯ect a realistic account of the ¯ow ®eld inside the

conical diffuser. The slight overprediction of the recirculation zone length, detected in the ®gure, is

attributed to the reported inlet swirl which was found to exist in the experimental rig.

The ®nal study performed with this diffuser geometry was made to verify that the implementation

of the new multiblock logic for the mixed-order formulation does not have an adverse effect on the

numerical results. The ®nite element model created for this study is shown in Figure 11, along with

the de®nition of the arbitrarily chosen four blocks. The resulting streakline traces are compared with

the single-block case in Figure 12. This ®gure does not show any discontinuities across any interface

boundaries, with reattachment lengths being identical for all practical purposes.

4. CONCLUSIONS

A complete study using a diffuser geometry was performed and reported. The ®rst part of the study

provided information on grid dependence for the ®nite element models and the second part

demonstrated the characteristic differences between the current RNG-based high-Re k±e model and

Figure 9. Comparison between turbulent kinetic energy pro®les
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Figure 10. Comparison of axial velocity development with experimental data

Figure 11. Finite element model and block de®nition
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the standard high-Re k±e model for a ¯ow domain with strong adverse pressure gradients. The

standard high-Re k±e model was shown to produce an overly diffuse ¯ow ®eld. This was detected in

both the streakline traces and the turbulent kinetic energy contours. The last part of the study

performed demonstrated that the new multiblock logic predicted the same values as the equivalent

single-block case. Finally, the predicted results were compared with experimental data and were

determined to slightly overpredict the reattachment length but yet provide a realistic ¯ow ®eld. This

longer reattachment length was expected to be due to the reported effect of inlet swirl in the test rig.
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